Chapter 1. SETS

Summary of the Lesson

- A Set is a well defined collection of distinct object. Each object is called elements of the set. Sets are usually denoted by capital letters and elements are denoted by small letters.
- A Set may be represented in two methods.
a) Roster/Tabular form $\operatorname{Eg}:\{1,2,3,4,5,6\}$
b) Set-builder form $\mathrm{Eg}:\{x / x$ is natural number $<7\}$
- A set which does not contain any element is called empty set or Null set or Void set.
- A set which consists of a definite number of elements is called a finite set, otherwise, the set is called infinite set.
- A set which has only one element is called a singleton set.
- Two sets A and B are said to be equal if they have exactly the same elements.
- A set A is said to be a subset of a set B, if every element of A is also an element of B. The symbol ' C ' stands for ' is a subset of ' .
- The collection of all subsets of a set A is called the power set of A and is denoted by $P(A)$. If A is a set with $n(A)=m$, then $n(P(A))=2^{m}$.
- The union of two sets A and B is the set of all those elements which are either in A or in B.
- The intersection of two sets A and B is the set of all elements which are common.
- The difference of two sets A and B in this order is the set of elements which belongs to A but not to B .
- The complemement of a subset A of a Universal set U is the set of all elememnts of U which are not the elements of A.
- For any two sets A and $B,(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \quad$ and $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime \prime}$
- If A and B are finite sets such that $A \cap B=\phi$, then $n(A \cup B)=n(A)+n(B)$

If $A \cap B \neq \phi$, then $n(A \cup B)=n(A)+n(B)-n(A \cap B)$

Objective Type Questions:

1. In a city 25 percent of the population travels by car, 45% travels by bus and 10% travels by both car and bus. Then persons travelling by car or bus is.
a) 80%
b) 40%
c) 60%
d) 70%
2. If A and B are two sets, then $A \cap(A \cup B)$ ' is equal to
a) A
b) $\quad \mathrm{B}$
c) \varnothing
d) None of these
3. If A and B are two sets. Then
a) $\quad A \cap B \subset A \cup B$
b) $\quad A \cap B=A \cup B$
c) $\quad A \cap B \supseteq A \cup B$
d) $\quad A \cup B \subseteq A \cup B$
4. If A is any set , then
a) $\quad A \cap A^{\prime}=U$
b) $\quad A \cup A^{\prime}=\phi$
c) $\quad A \cap A^{\prime}=U^{\prime}$
d) $A \cup A^{\prime}=U$
5. If A and B are any two sets, then $(A \cup B)^{\prime}$ is equal to
a) $A \cap B$
b) $A \cup B$
c) $A^{\prime} \cap B^{\prime}$
d) $A^{\prime} \cup B^{\prime}$
6. If A and B be any two sets, then $(A \cap B)^{\prime}$ is equal to
a) $A^{\prime} \cup B^{\prime}$
b) $A \cap B$
c) $A^{\prime} \cap B^{\prime}$
d) None of these
7. If A and B are two sets, then $A \cup(A \cap B)$ is equal to
a) B
b) A
c) A^{\prime}
d) None of these
8. If $A \subseteq B$, then $A \cup B$ is equal to
a) B
b) A
c) A^{\prime}
d) None of these
9. If $A \subseteq B$, then $A \cap B$ is equal to
a) B
b) A
c) A^{\prime}
d) B^{\prime}
10. Which of the following is a null set ?
a) $\left\{x: x^{2}=4\right.$ or $\left.x=1\right\}$
b) $\{0\}$
c) $\{x: x>0 \text { or } x<0\}^{\prime}$
d) $\left\{x: x^{2}+1=0, x \in R\right\}$
11. Two sets A and B are disjoint iff :
a) $\quad A-B=A$
b) $A \cap B=\phi$
c) $A \cap B \neq \phi$
d) $A \cup B=\phi$

Mathsblog

12. Let $A=\{1,2,3,4,5\}, B=\{2,3,4,5,6,7\}$, then $A \cap B$ is equal to
a) $\{5,6\}$
b) $\{1\}$
c) $\{2,3,4,5\}$
d) $\{1,2,3\}$
13. Let $U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{1,2,3,4,5\}, B=\{6,7\}$. Then A $n B^{\prime}$ is :
a) B
b) $\quad B^{\prime}$
c) A
d) A^{\prime}
14. Let $A=\{a, b, c, d\}, B=\{b, c, d\}, C=\{a, b, d, e\}$, then $A \cap(B \cup C)$ is
a) $\{a, b, d, e\}$
b) $\{e\}$
c) $\{b, c, d\}$
d) $\{a, b, c, d\}$
15. If A and B are two sets, then $A \cup B=A \cap B$ if
a) $B \subseteq A$
b) $A \subseteq B$
c) $\quad A=B$
d) None of these
16. Let A and B be two sets in the universal set. Then $A-B$ is equal to
a) $A^{\prime} \cap B$
b) none of these
c) $\quad A \cap B^{\prime}$
d) $A \cap B$
17. If A and B are two sets, then $A \cap(A \cup B)$ is equal to
a) B
b) none of these
c) A
d) A^{\prime}
18. If $A=\{1,2,3,4,8,10\}, B=\{3,4,5,10,12\}$ and $C=\{4,5,6,12,14\}$, then $(A \cup B) \cap(A \cup C)$ is equal to
a) $\{3,8,10,12\}$
b) $\{2,4,5,10,12\}$
c) $\{4,5,8,10,12\}$
d) $\{1,2,3,4,5,8,10,12\}$
19. If $A=\{1,2,3,4,8,10\}, B=\{3,4,5,10,12\}$ and $C=\{4,5,6,12,14\}$, then $(A \cap B) \cup(A \cap C)$ is
a) $\{2,8,10\}$
b) $\quad\{3,4,10\}$
c) $\{4,5,6\}$
d) None of these
20. If A and B are disjoint, then $n(A \cup B)$ is equal to
a) $n(A)$
b) $n(B)$
c) $n(A)+n(B)$
d) None of these
21. If A and B are not disjoint, then $n(A \cup B)$ is equal to
a) $n(A)+n(B)+n(A \cap B)$
b) $n(B)$
c) $\quad n(A)+n(B)-n(A \cap B)$
d) $n(A)$
22. The set of intelligent students in a class is
a) a null set
b) a singleton set
c) not a well defined collection
d) a finite set
23. Let $A=\{1,2,3,4\}$, then total number of subsets of A are given by
a) 16
b) 12
c) 8
d) 0
24. If A and B be two sets such that $n(A)=70, n(B)=60$, and $n(A \cup B)$ $=110$. Then $n(A \cap B)$ is equal to
a) 20
b) 130
c) 180
d) 170
25. Which set is the subset of all given sets ?
a) $\{a, b, c, d\}$
b) $\{a, b\}$
c) $\{a\}$
d) \{ \}

Answers:

1. C
2. a
3. C
4. b
5. c
6. a
7. d
8. d
9. C
10. b
11. c
12. a
13. b
14. c
15. a
16. a
17. d
18. b
19. C
20. d
21. C
22. d
